
Binding Activities to Services 

When an Activity is bound to a Service, it maintains a reference to the Service instance itself, allowing you to make method calls 

on the running Service as you would any other instantiated class. 

 

Binding is available for Activities that would benefi t from a more detailed interface with a Service. To support binding for a 

Service, implement the onBind method as shown in the simple example below: 

 
private final IBinder binder = new MyBinder(); 
@Override 
public IBinder onBind(Intent intent) { 
return binder; 
} 
public class MyBinder extends Binder { 
MyService getService() { 
return MyService.this; 
} 
} 
 

The connection between the Service and Activity is represented as a ServiceConnection. You’ll need to implement a new 

ServiceConnection, overriding the onServiceConnected and onServiceDisconnected methods to get a reference to the Service 

instance once a connection has been established. 

 
// Reference to the service 
private MyService serviceBinder; 
// Handles the connection between the service and activity 
private ServiceConnection mConnection = new ServiceConnection() { 
public void onServiceConnected(ComponentName className, IBinder service) { 
// Called when the connection is made. 
serviceBinder = ((MyService.MyBinder)service).getService(); 
} 
public void onServiceDisconnected(ComponentName className) { 
// Received when the service unexpectedly disconnects. 
serviceBinder = null; 
} 
}; 
 

To perform the binding, call bindService, passing in an Intent (either explicit or implicit) that selects the Service to bind to and 

an instance of your new ServiceConnection implementation, as shown in this skeleton code: 
@Override 
public void onCreate(Bundle icicle) { 
super.onCreate(icicle); 
// Bind to the service 
Intent bindIntent = new Intent(MyActivity.this, MyService.class); 
bindService(bindIntent, mConnection, Context.BIND_AUTO_CREATE); 

} 
 

Once the Service has been bound, all of its public methods and properties are available through the serviceBinder object obtained 

from the onServiceConnected handler. 

 

Android applications do not (normally) share memory, but in some cases, your application may want to interact with (and bind 

to) Services running in different application processes. 

 

You can communicate with a Service running in a different process using broadcast Intents or through the extras Bundle in the 

Intent used to start the Service. If you need a more tightly coupled connection, you can make a Service available for binding 

across application boundaries using AIDL. AIDL defi nes the Service’s interface in terms of OS level primitives, allowing 

Android to transmit objects across process boundaries. AIDL defi nitions are covered in Chapter 11. 

 

 


